Shujah M*, Joshi SN*, Nakamura M, Barkat TR (2024). Curriculum learning: sequential acquisition of task complexity enhances neuronal discriminability. bioRxiv. doi:10.1101/2024.09.10.612027

Valerio P, Rechenmann J, Joshi S, De Franceschi G, Barkat TR (2024). Sequential maturation of stimulus-specific adaptation in the mouse lemniscal auditory system. Science Advances. 10(1). doi:10.1126/sciadv.adi7

Cornuéjols R, Albon A, Joshi S, Taylor JA, Baca M, Drakopulou S, Barkat TR, Bernard C, Reaei-Mazinani S (2023). Design, Characterization, and In Vivo Application of Multi-Conductive Layer Organic Electrocorticography Probes. ACS Appl Mater Interfaces. 15(19):22854-22863. doi: 10.1021/acsami.3c00553.

Rem PD, Sereikaite V, Fernandez-Fernandez D, Reinartz S, Ulrich D, Fritzius T, Trovò L, Roux S, Chen Z, Rondard P, Pin JP, Schwenk J, Fakler B, Gassmann M, Barkat TR, Strømgaard K, Bettler B (2023). Soluble amyloid-β precursor peptide does not regulate GABAB receptor activity. eLife 12:e82082. doi.org/10.7554/eLife.82082

Solyga M, Barkat TR. Distinct integration of spectrally complex sounds in mouse primary auditory cortices (2022). Hearing Research 417:108455. doi.org/10.1016/j.heares.2022.108455

Studer F, Barkat TR. Inhibition in the auditory cortex (2022). Neuroscience and Biobehavioral Reviews 132:61-75. doi.org/10.1016/j.neubiorev.2021.11.021

De Franceschi G, Barkat TR. Task-induced modulations of neuronal activity along the auditory pathway (2021). Cell Reports 37(14):11015. doi:org/10.1016/j.celrep.2021.110115

Solyga M, Barkat TR. Emergence and function of cortical offset responses in sound termination detection (2021). eLife 10:e72240. doi.org/10.7554/eLife.72240

Navntoft CA, Landsberger DM, Barkat TR, Marozeau J. The perception of ramped pulse shapes in cochlear implant users. (2021) Trends Hear: 23312165211061116. doi.org/10.1177/23312165211061116

Nakamura M, Valerio P, Bhumika S, Barkat TR. Sequential Organization of Critical Periods in the Mouse Auditory System (2020). Cell Reports: 32(8):108070. doi.org/10.1016/j.celrep.2020.108070.

Kalish BT*, Barkat TR*, Diel EE, Zhang EJ, Greenberg ME, Hensch TK. Single-nucleus RNA sequencing of mouse auditory cortex reveals critical period triggers and brakes (2020). PNAS 117(21):11744-11752. doi.org/10.1073/pnas.1920433117.

Navntoft CA, Marozeau JD, Barkat TR. Ramped pulse shapes are more efficient for cochlear implant stimulation in an animal model (2020). Scientific Reports 10:3288. doi.org/10.1038/s41598-020-60181-5.

Bhumika S, Nakamura M, Solyga M, Valerio P, Lindén H, Barkat TR.  A late critical period for frequency modulated sweeps in the mouse auditory system (2019). Cerebral Cortex 30(4):2586-2599. doi.org/10.1093/cercor/bhz262.

Christensen KR, Lindén H, Nakamuri M, Barkat TR. White noise background improves tone discrimination by suppressing cortical tuning curves (2019). Cell Reports 29(7):P2041-2053. doi.org/10.1016/j.celrep.2019.10.049.

Solyga, M, Barkat TR. Distinct processing of tone offset in two primary auditory cortices (2019). Scientific Reports 9:9581. doi.org/10.1038/s41598-019-45952-z

Navntoft CA, Marozeau JD, Barkat TR. Cochlear Implant Surgery and Electrically-Evoked Auditory Brainstem Response Recordings in C57BL/6 Mice (2019). Journal of Visualized Experiments 143: e58073. doi.org/10.3791/58073

Navntoft CA & Adenis V. Does Auditory Cortex Code Temporal Information from Acoustic and Cochlear Implant Stimulation in a Similar Way? (2018). Journal of Neuroscience 38(2):260-262. doi.org/10.1523/JNEUROSCI.2774-17.2017

Navntoft CA. Tracking down nonresponsive cortical neurons in cochlear implant stimulation (2017). eNeuro 4(3):e0095-17. doi.org/10.1523/ENEURO.0095-17.2017

Favre MR, Barkat TR, LaMendola D, Khazen G, Markram H and Markram. General developmental health in the VPA-rat model of autism (2013). Frontiers in Behavioral Neuroscience 7:88. doi.org/10.3389/fnbeh.2013.00088

Barkat TR, Polley DB, Hensch TK. A critical period for auditory thalamocortical connectivity (2011). Nature Neuroscience 14(9):1189-1194. doi.org/10.1038/nn.2882

Hackett TA*, Barkat TR*, O’Brien BJ, Hensch TK, Polley DB. Linking topography to tonotopy in the mouse auditory thalamocortical circuit (2011). Journal of Neuroscience 31(8):2983-2995. doi.org/10.1523/JNEUROSCI.5333-10.2011

Silva G, Le Bé J, Riachi I, Rinaldi T, Markram K, Markram H. Enhanced long term microcircuit plasticity in the valproic acid animal model of autism (2009). Frontiers in Synaptic Neuroscience 1:1. doi.org/10.3389/neuro.19.001.2009

Rinaldi T, Perrodin C, Markram H. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism (2008). Frontiers in Neural Circuits 2:4. doi.org/10.3389/neuro.04.004.2008

Rinaldi T, Silberberg G, Markram H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid (2008). Cerebral Cortex 18: 763-770. doi.org/10.1093/cercor/bhm117

Markram K, Rinaldi T, La Mendola D, Sandi C, Markram H. Abnormal fear conditioning and amygdala processing caused by prenatal exposure to valproic acid (2008). Neuropsychopharmacology 33:901-912. doi.org/10.1038/sj.npp.1301453

Markram H, Rinaldi T, Markram K. The Intense World Syndrome – an alternative hypothesis for autism (2007). Frontiers in Neuroscience 1:77-96. doi.org/10.3389/neuro.01.1.1.006.2007

Rinaldi T, Kulangara K, Antoniello K, Markram H. Elevated NMDA receptor levels and enhanced postsynaptic long term potentiation induced by prenatal exposure to valproic acid (2007). PNAS 104(33):13501-13506. doi.org/10.1073/pnas.0704391104

Köster U, Bergmann UC, Carminati D, Catherall J, Cederkäll J, Correia JG, Crepieux B, Dietrich M, Elder K, Fedoseyev VN, Fraile L, Franchoo S, Fynbo H, Georg U, Giles T, Joinet A, Jonsson OC, Kirchner R, Lau Ch, Lettry J, Maier HJ, Mishin VI, Oinonen M, Peräjärvi K, Ravn HL, Rinaldi T, Santana-Leitner M, Wahl U, Weissman L. The ISOLDE Collaboration. Oxide fiber at ISOLDE (2003). Nuclear Instruments and Methods in Physics Research B 204:303-313. doi.org/10.1016/S0168-583X(03)00505-6

*authors contributed equally to the work